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A flexible vertical tube, clamped at its upper end and carrying a nozzle at its free lower
end, can become unstable when a liquid flows down it. The system is a convenient one
for the study of passage through an instability boundary as it is amenable to theoretical
and experimental investigation of both free and forced oscillation. This paper presents
the results of a theoretical and experimental study of the motions with special reference
to the instability boundary.

1. INTRODUCTION

The vibration of a flexible tube conveying fluid is an interesting phenomenon that possesses
considerable technological importance. A paper by Ashley & Haviland (1950) was perhaps the
first published on the subject. Since its appearance, the subject has been discussed frequently
(Paidoussis 19770). By contrast, the harmonic response of dynamical systems near the instability
boundary has only been discussed in a few papers. The first study of this kind was perhaps that of
Frazer & Jones (1937). Their work dealt principally with a method proposed earlier by
von Schlippe (1936) for estimating the critical flutter speed of an acroplane. A sequel paper
appeared later by Frazer (1939). Brann (1965) used a harmonic test to investigate the stability
of a rudimentary model railway bogie. In a later paper, Brann (1967) discussed the implications
of the harmonic resonance test near the state of instability. Mubhlstein (1966) used a forced
vibration method based upon the concept of mechanical impedance to investigate panel flutter.
Nevertheless it remains true that the literature in this field is sparse.

The studies reported in this paper were conceived as a possible means of investigating a
technical problem of extreme importance, namely the flutter of aircraft. It is not suggested, of
course, that a vertical tube conveying a liquid bears much resemblance to an aircraft in flight,
but such similarities as there are are perhaps worthy of some thought.

To study the phenomena that are normally associated with flutter and flight flutter testing,
and to which simple flutter calculations apply, it would evidently be helpful to consider a much
simpler system than an aircraft. That system should ideally satisfy a number of requirements:

(a) Itshould be simple with simple mode shapes.

(b) Itshould be easy to take the system through an instability boundary, and preferably more

than one.

(¢) The system should lend itself readily to resonance testing.

(d) The system should be essentially a ‘linear’ one.

The system that is examined here meets all these requirements. Moreover, the system is such that
the fluid forces at any instant are accurately determined by the motion at that instant, thus
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VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 3

rendering the simplifying assumption of ‘quasi-steady flow’ (that is sometimes made in rudi-
mentary aeroelasticity calculations) a tenable one.

1.1. Notation

-

structural stiffness matrix; see equation (41)
sectional area of tube

nozzle area

viscous damping constant

&S A

N

flexural rigidity of tube

fluid (hydrodynamic) damping matrix; see equation (41)

amplitude of harmonic exciting force

force per unit length applied to tube by fluid in the direction Ox, Ov

Ty

S
<

dimensionless amplitude of force applied at section X = z//
distribution of external force, a function of x; frequency parameter
fluid stiffness matrix, see equation (41)

gravity stiffness matrix, see equation (41)

assumed amplitude of P in forced motion

unit matrix

length of tube

mass/unit length of tube

mass/unit length of fluid inside the tube

number of modes admitted, see equation (10)

S o~NTmQSoNNa

=)

dimensionless generalized coordinate
column matrix of generalized coordinates P

“@»-u'@§§

gauge pressure of fluid
gauge pressure of fluid just above nozzle

> >

=1

gauge pressure exerted by fluid on upper surface of nozzle plate
generalized force

generalized coordinate, see equation (10)

matrix of dimensionless applied generalized forces

RSO

distributed normal reactive force per unit length, see figure 3 (b); rotameter discharge
parameter

dimensionless time; kinetic energy

tension in tube just above the nozzle

flow velocity inside the tube

Assumed complex amplitude of P in forced motion

dimensionless lateral displacement = v//; potential energy

work done by lateral external loading; virtual work

vertical rise of the tube section due to lateral deflexion

dimensionless distance along tube = x//

distance along tube from top

dimensionless distance of excitation point from top of tube

distance of point of excitation from top of tube

nozzle parameter = ratio of fluid speed in the nozzle to fluid speed in the tube

dimensionless receptance

BRNN®NE I 9N gy

]
X
N
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Mass ratio parameter, see equation (39)
weight parameter, see equation (39)

slope of the tube with respect to the vertical
dimensionless distributed applied force
dimensionless measure of viscous damping
dimensionless measure of Kelvin damping

AN NN OR ™

@

constant appearing in expression for ¢ (x)
velocity parameter, see equation (39)
value of u at stability boundary

QEFEE

dimensionless frequency

Q
[}

value of o at stability boundary

Kelvin damping constant

dimensionless characteristic function
column matrix of values of @ for X = z/l
characteristic function of cantilever

SRR

dimensionless driving frequency

S

o  frequency of harmonic exciting force

A dot over a symbol signifies a derivative with respect to ¢ or 7.
Primes signify derivatives with respect to x or X.

1.2. General background

Before going into the details of our system it may be useful to discuss the general problem of
forced oscillation of a non-conservative system. In doing so we shall employ a notation that is
peculiar to this section; this is the simplest way of avoiding confusion with the symbolism used
later on.

A typical system may be represented by the matrix equation

A(p) G+ B(p) g +C(p) q = Fer, (1)

where A(p), B(#) and C(p) are the inertia, damping and stiffness matrices, # being a disposable
parameter such as air speed in flutter problems or flow velocity in the problem of a flexible tube
conveying fluid. Fis a column matrix of amplitudes of harmonic excitation (the driving frequency
being w) and q is a vector of generalized coordinates. The matrices A(x), B(x) and C(p) are real
and of order n x n, while F and q are of order n x 1.

The steady response of the system may be written as

q=0c¢c", (2)

where Q is a complex vector. On substitution of equation (2) into (1) we find that
[C(w) — PA() +ioB(1)] Q = F, (3)
or S(p,iw) Q = F. (4)

The direct receptance a;; at any coordinate j is defined as the generalized displacement at that
coordinate due to a generalized force of unit amplitude and frequency  applied at the same
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VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 5

coordinate. Application of Cramer’s rule to equation (4) shows that

2n—2

o — @i _ cofactor §;; al;ll (i —2,) "
i I B |S| - 2n . ]
! IT (lw—A,)
e=1

where the A, (¢ = 1,2, ..., 2n) are the 2n complex (‘resonance’) eigenvalues of S(x, iw) and the
A (@=1,2,...,2n—2) are the 2n— 2 complex (‘anti-resonance’) eigenvalues of S§(u,iw) with
respect to the coordinate ¢;. These anti-resonance eigenvalues are the (resonance) eigenvalues
of the system that results from locking the jth coordinate ¢; of the original system. It follows
directly from equation (5) that the inverse direct receptance is

2n
1 6I=Il (iw—A,)
; = 2n—2 * (6)
7T (iw=2,)
a=1

Equation (5) also shows that as w increases the locus of the direct receptance in the complex
plane passes through the origin whenever iw is equal to a pure imaginary root A, of the system.
Moreover it will assume an infinite value whenever iw equals a pure imaginary root A,. Equation
(6), on the other hand, shows that the curve of inverse receptance possesses the opposite features.
It assumes zero (or infinite) values whenever iw is equal to a pure imaginary root A, (or A,) of
the system. It is assumed, of course, that none of the imaginary roots A, is exactly equal to an
imaginary root A,.

Since the receptance curve assumes infinite values at the pure imaginary roots A,, it is of less
interest here than that of the inverse receptance. This is because such roots as these occur at the
boundary of flutter instability. Turning, then, to the inverse receptance curve 1/o;;(iw) we note
that the phase angle (strictly the argument) changes as w increases continuously. This variation
may be examined by applying the encirclement theory to equation (6), as with the transfer
function of a control system.

When the imaginary variable iw traverses the usual Nyquist path (an infinite semi-circle
covering the complete right hand side of the complex plane), the total change in the phase angle
of the inverse receptance is found to be

|A of ety (i) 8252 = 2m(N, — N,— 1) (7

W=—0

where N, and N, are the numbers of roots A, and A, with positive real parts respectively. Thus the
inverse receptance curve encircles the origin (N, — N,— 1) times as w changes from — o0 to + 0.
These encirclements will be in an anticlockwise direction as ¢ of the inverse receptance is usually
measured from the positive real axis in a counterclockwise direction.

Application of the encirclement theory to oscillatory mechanical systems is not as convenient
asitis for control systems, however. In the latter the number of encirclements is considered around
the critical point ( — 1, i0) rather than the origin. Moreover poles (which correspond to the anti-
resonance eigenvalues) with positive real parts seldom occur in transfer functions. These two
features greatly simplify the application of encirclement theory. For its application to mechanical
systems a modified approach is preferable.

All the complex resonance and anti-resonance eigenvalues occur in conjugate pairs since the
matrices A, B and C, in equation (1), are real. Suppose there are no real resonance or
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6 R.E.D.BISHOP AND I. FAWZY

anti-resonance eigenvalues. Such a case would be more relevant for flutter instability. Equa-
tion (6) can then be rewritten as

{

o B
g

|

>
N
g

|

=~
<

= f

; (8)

S

oy, iw) =

a) (1(’) - Aa)

=
S
>

Y
I
-

where A, and A, are the complex conjugates of A, and A, respectively.

Figure 1 shows that the phase contribution of a conjugate pair of roots A, at 2, with negative
real part increases continuously from 2n (at @ = 0) to 3n (at w = ). On the other hand the
contribution of another pair with positive real part at sz, decreases continuously from 2z (atw = 0)
torn (at w = ).

\Im (1/az;;)
" ¢CA m(1/e 5

C\ A
A (i) Al /| Ae(psy)
Y

Re(l/og,T
i ki A

Xe (1“1) ie(/”c) Xe(/tZ)

Ficure 1. Phase contribution to inverse receptance of conjugate pairs of resonance eigenvalues,
for driving frequency w.

IS

In other words the transition of one conjugate pair of roots A, from the left hand side to the
right hand side of the imaginary axis produces a net decrease of 2r in the phase of 1/a;;. (This
result agrees with that of the encirclement theory in equation (7).) We therefore conclude that
the contribution of a conjugate pair of roots A, is either a continuous increase or a continuous
decrease of w in the phase of 1/;; depending on whether the real part of the pair is negative or
positive respectively. At the transition point where the pair is pure imaginary, at A, the contribu-
tion is a sudden change from —n to +n. This is again in agreement with equation (6) which shows
that the curve of 1/e;; passes through the origin of the complex plane whenever iw equals one of
the imaginary roots A,.

When investigating the stability of mechanical systems one is usually interested in the first
instability boundary. The system, represented by equation (1) with its right hand side equal to
zero, will usually be stable at low values of the parameter x and consequently all the roots A,
appear on the left hand side of the imaginary axis in the complex plane. The first critical value
of u is that at which the imaginary axis is first crossed by any of the eigenvalues. Under these
circumstances a simple rule may be stated as follows:

‘As the system departs from a stable state to an unstable state, its inverse-receptance curve
shifts across the origin from the side of increasing phase difference to the side of decreasing
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VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 7

phase difference. At the flutter instability boundary the curve passes through the origin at

the critical frequency.’

This rule is illustrated diagrammatically in figure 2. The validity of the rule rests upon the
assumption made earlier that all the roots A, and A, have distinct imaginary parts. It will also be
appreciated that the roots A, make contributions to the phase difference in the opposite direction
from that of the roots A,, as may be seen from equations (7) and (8). Thus it is necessary to make
allowance for the anti-resonance eigenvalues of the system when applying this rule.

AIm(1/a;) A1m(1/ay)

increasing
phase difference

N %

Oy A, v

N

Nstable Re(1/a;) stable?”

s Ro(1/a;)

critical critical
\ unstable unstable 4
(a) (b)
AIm (1/a;) AIm(1/a;)
tabl
critical, g
stable.\ \ *‘}":_ ¢
\ . Re(l Ja;)  unstable 4 Re(1/ay)
it
\ o 1s(i:aé.ble./
(c) (d)

Ficure 2. Shifting of the inverse receptance locus across the origin at the flutter instability boundary.
The arrows indicate the directions of increasing .

Attention will now be focused on the particular system under investigation, namely the flexible
tube conveying fluid. One of the main objectives will be to study the implications and application
of the foregoing rule, as an instability criterion.

2. MATHEMATICAL FORMULATION
2.1. The system and its distortion coordinates

The system under investigation is shown diagrammatically in figure 3. It consists of a vertical
flexible tube clamped at its upper end and free at its lower. Incompressible fluid flows downwards
inside the tube at a constant velocity U. A light nozzle is fitted at the lower end of the tube. The
velocity of fluid issuing through this nozzle in parallel flow is aU. An external harmonic force
may be applied laterally to the tube.

In this paper, equations of motion are obtained by the use of Lagrange’s equations in the form
d (8 T) oT oV

ailag ) oo =@ (=12, (9)
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8 R.E.D.BISHOP AND I. FAWZY

taking the system as the empty tube. That is to say, 7"and V will relate to the dry tube and both
the fluid actions and the external exciting force will be accounted for in the quantities @;. In this,
we shall adopt the approach that is commonly employed in aircraft flutter analysis.

It is necessary, of course, to choose a set of convenient generalized coordinates ¢; which define
the configuration at any instant. For the empty tube the lateral displacement v(x,#) may be
considered as the sum of displacements in the # lowest principal modes of a uniform elastic beam.
We thus assume that

viet) = 3 0,0 4, (10)

where ¢(x) is the sth characteristic function of the uniform cantilever, ¢,(¢) is the associated
generalized coordinate and 7 is the number of characteristic functions taken to represent the
tube deflexion. Greater accuracy of representation in equation (10) is achieved by taking larger
values of n.

s

pA
dR
dr\

pA+ 9-9(‘;—‘4—) dx
mygdx
E elwot ( b)

\

(a) aU
x

Ficure 3. The system.

The theory that will be developed is a linear one in which lateral displacements v are considered
first order small compared with x or /. It follows that the vertical displacement of the tube,

1 (= (Ov\?

0

is second order small. The linear analysis implies that quantities of order greater than two in v are
ignored in energy and work expressions.

2.2. Energy and work expressions

The kinetic energy of the empty tube is

U /Ov\2
T=1 f (—) dx, 12
Zml 0 6t ( )
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VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 9

where m, is the mass of the tube per unit length. (The nozzle fitted at the free end of the tube is
assumed to possess negligible mass, its function being only that of increasing the fluid velocity
from U to aU at the tube exit.) The potential energy is

1 /02p\ 2 !l [ v\ 2
= 1 —_— 1 _—
V=31EI f , (i‘)xz) dx + §m, gfofo (i‘)x) dx dx, (13)

where EI is the flexural rigidity. On substituting equation (10) into these energy expressions, so
as to form the left hand side of equation (9), it is found that the equations of motion become

n l x
S [ | mtdudor Blo i+ meg, [ pigids|de = @ (= 1.200m) (19
s=1J0

where an ‘overdot’ signifies differentiation with respect to time f and a prime means differentia-
tion with respect to distance x.

The contribution made by the fluid flow to the generalized force @, is found from the work
done by the fluid actions during a virtual displacement of the tube. These actions are of two sorts:

(i) a distributed force, comprising a reaction normal to the tube wall and also friction effects
along it;

(ii) an axial tensile force applied to the inside surface of the nozzle plate.

We shall first find the magnitudes of these effects.

Figure 3 () shows an element of fluid which is instantaneously located at a distance x below
the upper clamped end of the tube. The friction force along the tube bore is dfand the normal
reaction of the tube wall is dR. The gauge pressure in the fluid is p.

The transverse force applied by the fluid element to the inside of the tube in the direction Ov is

dF, = dR+dfdvox. (15)

The absolute velocity of the fluid element in the lateral direction is

0 0
(&-’- U'a—'-x)'ll

so that the equation of motion of that element in the lateral direction Ov is

v 0 o 0 0\?
AR+ gt g (pA )5 = —magy+ U v o)
that is to say
0 0)2 0 v
A, = =5+ Vg ) van =gy (o) o o

The downward vertical force applied to the tube by this fluid element is
d o
F, =df- dRa. (18)

But vertical equilibrium of the fluid element requires that

v 0(pA) dx = o.

Therefore dF, = mygdx— % dx. (20)

2 Vol. 284. A.
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10 R.E.D.BISHOP AND I. FAWZY

Having found expressions for the distributed forces dF, and dF, we may notice that neither
contains a contribution from fluid friction. It was explained by Benjamin (1961) that motion of
a tube of this sort is largely uninfluenced by friction between the fluid and the tube wall.

To find the last of the fluid actions (the force exerted on the upstream side of the nozzle and
consequently on the tube cross section just above the nozzle plate) we consider the passage of
fluid through the nozzle. We shall assume that the length of tube in which contraction of the flow
takes place is small. The mass rate of flow through the nozzle is m, U, where m, = pA4, i.e. the
product of the fluid density and the internal cross-sectional area of the tube.

The gauge pressure above the nozzle is assumed to have an average value of p,. The gauge
pressure exerted by the fluid on the upper surface of the nozzle plate is assumed to have an
average value of p,,.

Consideration of momentum flux shows that

hA—pn(4d—4n) =myU(aU-U), (21)
where 4y is the nozzle area and a = A[An. Equilibrium of the nozzle plate in the vertical direction
also requires that pu(A—4,) =T, (22)
where 7} is the tension in the tube at the nozzle. It follows that

pA-T,=m,U?(a—1). (23)

As Benjamin (1961) pointed out, it is reasonable to assume that the flow in the tube is inviscid
and incompressible. But in general, the flow is unsteady so that Bernoulli’s equation can strictly
be applied only in its extended form (see, for example, Duncan, Thom & Young 1960). The
source of the unsteadiness, however, is the small deflexion v(x,¢) and it can readily be shown
that its influence is negligible in the sense that Bernoulli’s equation can still be applied in its
elementary form without reference to the small perturbations of the flow due to flexure of the
tube. Across the nozzle plate, therefore, we have

b+ 3pU? = §potU?
and so hd = tm,U?(a®—1). (24)
Between them, equations (23) and (24) show that

T,= 3my U?(oc —1)2. (25)

Bernoulli’s equation can also be applied between a section distant x below the upper end of the
tube, where the gauge pressure is p, and the section just above the nozzle plate which is distant /

p+pg(l—2) = pr

or pA+myg(l—x) = pA, (26)
and equation (24) now shows that

pA = my U2(a?—1) —myg(l—x). (27)

below the upper end. This gives

If this last result is now substituted into equation (20) it is found that dF, vanishes while
equation (17) shows that

0 0)\? 0% ov )
dF, = —m, (a‘ﬁ U@—C) vdx — Im, U?(a?—1) de—mggadx+m2g(l—x) a—xzdx. (28)
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VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 11

Now the total fluid action on the tube consists of the sum of the d 7, over the tube length and the
tension 7; at the lower end. The distributed force dF, is in the same direction as the lateral
deflexion of the tube, while the tension 7; acts tangentially to the tube at its lower extremity and
is in the downward direction. The virtual work done by these fluid actions is therefore

! QF, o
8W == fo&la-dx~5wﬂ;+51)ﬂ; (a)l, (29)

where dw; is the virtual displacement upwards at the lower end and (0v[0x); is the slope of the
tangent to the tube at its lower end.
The contribution to the ith generalized force is therefore

oW 1 oF n 1 ., n ,
Qs =gy = [ #grds= E1[ agigiars STab0 20k (0)

that is to say,

n 1
(@) t1uia = sglfo {—my s s Py —2m, Ugs s py —moU2q Py — §my U%(a®—1) ¢, 05 b5

— My 8qs Ps Py +mag(l— %) g Ps s — dmy UP(a — 1)2 g, pe 1} d

+s§1 1my U (o~ 1)2 [0, 820 $:(D)] G =1,2, ...,7) (31)
and, since f: depidx = ¢s(l) ¢, (1) ~J; b, ! dx, (32)

it follows that
n [l
(@swa = 3 [ (=matih— 2, U= mpaUg, 8,
8= .

_nggs¢; +m2g(l‘x) 43¢g}¢1, dx (z = 1’ 2’ ARS] n) (33)

To obtain the contribution, (@,)exc, to the generalized force component @, that is attributable
to the excitation, we first assume that the tube is acted upon by a general force of intensity f(x)
per unit length. For a virtual displacement &v of the tube, the work done is

1
W = fo dvf (x) dx. (34)

On substituting for v in equation (34) from equation (10) it is found that the generalized force
component is

(@oxe = g = [ 9SG dr (1= 1,200, (35)

2.3. The equations of motion

To form the equations of motion (14), we first note that

l ”n " l 1
foqss 7y = f g g (36)
Write f i s, dx = J(x)
0
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12 R.E.D.BISHOP AND I. FAWZY

and note that @¢(0) ¢,(0) = 0. Then, integrating by parts twice successively, we obtain

[ [} #isicsas = [nigigls -0 as
= [ pigidr— gl [ g givas
- [[tig-a-ngg1an (37)

If, now, the expressions (33) and (35) are introduced on the right hand side of equation (14) and
the results (36) and (37) are introduced on the left, it is found that

n l i ,
_2}1 0[(m1+m2) q.s¢s+2m2Uq's¢;‘+a’m2U2gs .Is’+EIqs év+(m1+m2)ggs¢s
!
— (mytm) gI=) ) pudr = [ ) i (= 1,2m). (39

This is a set of # equations that describe the motion of the system under consideration.

It may be derived by other methods (Wahed 1969) —e.g. by direct application of Newton’s
laws in conjunction with Galerkin’s method or by the employment of an adaptation of
Lagrange’s equations (Benjamin 1961). .

2.4. Dimensionless parameters and matrix formulation
Itis convenient to put the equation of motion into a dimensionless form. Suitable dimensionless

X v, B EI LI [
=p V=P T“[(m1+m2)z4] b=

)
e
" > ) 5T .

parameters are

(39)

When these parameters are used in equation (38) it is found after rearrangement of the terms
that

n [, f1 1 1 ) ,
Z[Ps f Qiidist+,uﬂPsf ®,8,dX+P, f [¢i¢§v+ﬂ2ad§i¢§+y{(z¥—l)@i(ﬁ;’+¢i@s}]dX]
0 0

s=1 0
1
=f (0,dX, (i=1,2,..,n) (40)
0

where now P, is a dimensionless generalized co-ordinate (a function of dimensionless time 7°) that
replaces ¢, and @, is the 7th dimensionless characteristic function of a uniform beam (being a
function of the dimensionless quantity X). The ‘overdot’ refers now to differentiation with
respect to 7" and the prime indicates differentiation with respect to X.

The significance of each of the parameters in equation (39) is as follows:

o is the nozzle parameter (where a > 1)

S is the mass parameter, a measure of the total mass per unit length accounted for by the fluid

(and 0 < B < 2)

v is the weight parameter, a measure of the stiffness attributable to gravity (where y > 0)

u is the velocity parameter, a measure of fluid velocity inside the tube (and x > 0)

{ is the excitation parameter, a measure of the external harmonic force applied on the tube

€3 0).
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VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 13

The integrals in equation (40) may readily be evaluated on reference to Bishop & Johnson
(1960). When their values are substituted into the equations and the terms are rearranged it is

found that IP+ILI/ﬂE15+[A +p?aG+vH]P =R (41)

where I'is the unit matrix of order z, P is the column matrix {P,, P, ..., P,} and E, A, G and H
are square matrices of order » given by:

1 , 4 .
= [, 99X = g

1
E, =f @,0.dX = 2;
0

4,,=0; 4

1
o= [ o orax -
0
4(Jr/\r_ Js/\s) .

1 -
G,y = fo @, 05dX = o8ty

4

1
G,, =f O.0/dX = 5,A(2—0,A,); (42)
0

1
H, = [ [(X-1) 0,0, +0,0() X
0
= rs[01g8(2 + Crs) - 012‘3(0-7'/\7‘ - UsAs) - ( - 1)r+s(4 + Crs)];

1
H, =f [(X—1)®,&+@,0,]dX
0

= 1020, A, + 2.

In equations (42) o, and A, are the constants appearing in the characteristic functions of beam
vibration (see Bishop & Johnson 1960) and

A C 4

ST

O,

-~
'S As’

(43)

The column matrix R is obtained by integration of the right hand side of equation (40). Each
integral represents the work done by the appropriate force function in the corresponding mode of
deflexion. It can be evaluated only when the force distribution is known, of course.

In the special case where the tube is subjected to a concentrated harmonic force F, el“t applied
at a distance z below the clamped end (as in figure 3), the non-dimensional force may be found

as follows: 1 1
. dX = | L=d.dX
fo &P fo E1%

and since f = 0 everywhere except at x = z and
1 1
f ﬂdX:ffdx = F,,
0 0

Fyl2
Ri=Fr

it follows that
D,(Z)eleT, (44)

where the dimensionless frequency is

oo ot _ wo[(m1+m2) 14]%.

T i (45)


http://rsta.royalsocietypublishing.org/

A

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

14 R.E.D.BISHOP AND I.FAWZY
The equation of motion is therefore
IP + uBEP + (A + ap?G +yH) P = F&,eloT, (46)

where ' = Fy2[El and @, = {D,(Z), Dy(Z), ..., D, (Z)}.

2.5. Representation of structural damping forces

Apart from the hydrodynamic damping caused by water flowing inside the tube, and described
by the term ,uﬂEP in the equation of motion (equation (41)), two other types of damping will be
considered, namely viscous and Kelvin damping. Both of these types are commonly used in the
study of free vibration problems and it is of interest to see how they affect the stability boundary
of our system.

Viscous damping may be considered to account for the external damping on the tube surface
and the damping at its clamped end. The Kelvin damping is widely accepted as representing
internal damping in rubber material (see Payne & Scott 1960). Paidoussis (1970) considered
both the external and internal dampings in such a system to be either viscous or hysteretic.

The viscous damping is accounted for in the usual way by employing a dissipation function in
Lagrange’s equations. Kelvin damping, on the other hand, is considered by simply replacing the
Young modulus E by the expression (E+ v 0/0t), where v is the so-called coefficient of dynamic
viscosity of the rubber. If the foregoing procedure is followed, the complete equations of motion
are found to be

n . (1 1 X
5|5 0i0,ax+ 2, [ (1p0,00 410,04 x0,5) aX
§=1 0 vo
1 1
+PSJ [P, DY + u2a®, D+ y{(X—1) O, Dy + D, Dy}] dX] =f (D, dX,
0 0
(i=1,2..,n) (47)

where 7 and « are dimensionless parameters for the viscous and Kelvin damping such that

b2 ) I 3
1= Ellmy +my) ¥ K:ﬁ[<m1+m;'>'E] ’ (48)

b being a constant specifying the viscous damping force per unit velocity per unit length.
An interesting comparison may be drawn between the viscous and Kelvin dampings. The
viscous and Kelvin damping terms in equation (47) are

1 1
7P, f &, B,dX, AP, f ®,8,dX
0 0

respectively (see Bishop & Johnson 1960). Evidently then, a viscous damping coefficient 7 is
equivalent to a Kelvin damping coefficient k multiplied by A% in respect of the sth mode of
cantilever vibration. It follows that whereas the viscous damping affects the different modes with
the same intensity, Kelvin damping affects the higher modes more than the lower ones, its
intensity being proportional to the square of the natural frequency of the mode (since the sth
natural frequency o, is proportional to A2). This characteristic of Kelvin damping is very useful
for the system under investigation as it was noticed in the course of experiments that high modes
were damped much more heavily than low ones.
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VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 15

Equation (47) is of the same form as (40). To arrive at the equation of motion comparable
with (46), we make use of this last result, obtaining

IP + (uPE+ I +«S) P+ (A +0u2G +yH) P = F® , ¢loT, (49)
where S = diag (A}, A3, ..., A%). (50)

3. NUMERICAL ANALYSIS
3.1. Method of solution and calculation procedure

For the free vibration analysis it is helpful to allow first for fluid damping only and then to show
how the results are modified by the admission of other types. Accordingly, a solution of equation
(46) is assumed in the form

P =Keo?, (51)
where K is an unknown vector {K;, K,, ..., K,} and o is an unknown dimensionless complex
frequency (not to be confused with the constant o, in the beam characteristic function which
always appears multiplied by A,). The condition for a non-trivial solution to exist is therefore

|o2I+ o (upE) + (A + p?*aG +yH)| = 0. (52)

On expansion, the determinant yields a polynomial of degree 2z in o and there are thus 2z roots.
These roots may be real; alternatively they may be imaginary or complex, in which case they
form conjugate pairs since the characteristic polynomial has only real coefficients. Dynamic
instability prevails when either a real root or the real part of a complex root is positive. When
a real root is positive the system loses stability by ‘divergence’. When the real part of a complex
root is positive stability is lost by oscillatory motion of increasing amplitude, termed ‘flutter’.
The nature of the vector K will largely be ignored here as we shall concern ourselves mainly with
the instability boundary.

The calculation procedure was the straightforward one of finding all the roots of the charac-
teristic equation. First the elements of the matrices E, A, G and H were calculated by direct
substitution in equation (42) with the use of the characteristic functions of cantilever beams. For
series of values a, f and v, the roots were then computed and plotted on the complex plane to
obtain appropriate root locus diagrams. Whenever a branch of the root locus diagram crossed
the imaginary axis from left to right a flutter instability boundary was indicated. The value of
at the crossing point was the critical (dimensionless) velocity uc and the ordinate of the crossing
point on the imaginary axis indicated the critical (dimensionless) frequency o, i.e. the frequency
of sustained oscillation at the instability boundary.

A similar approach to this was employed when allowance is made for viscous and/or Kelvin
damping. Then values have to be chosen in some way for the constants 9 and «. It is necessary in
this case to start from equation (49), taking a null matrix on the right hand side.

For the forced vibration analysis a particular integral of equation (46) was assumed in the form:

P, = hy el@Ten

P2 — h2 ei((l)T+Cg)

Pn = hn ei(l‘)T'l'cn)

(53)

where ky, ks, ..., h, are amplitudes and ¢, ¢y, ..., ¢, are phase angles defining a mode of vibration.
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16 R.E.D.BISHOP AND I. FAWZY

It is evidently necessary that
[(A -0+ p?aG+yH) +ivufElu = F®,, (54)
in which u is a column matrix whose elements are
u, = h.eler (r=1,2,...,n). (55)

For any particular value of fluid velocity # and excitation frequency w, equation (54) can be
solved for u. When the elements of u are known, equations (53) give the values Py, Py, ..., P,

by direct substitution; that is to say they give the matrix P. Having obtained P it is possible to
obtain the forced displacement of the tube at any distance ¥ = y/! from the clamped end. This is

V(Y) = 3 B,(Y) hyelor+en, (56)
r=1

It is now possible to write down an expression for the general cross harmonic receptance
between two sections y and z. This is the complex displacement caused by a harmonic force of
unit amplitude and (in nondimensional terms) it is

iy = %é ®,(Y) b, . (57)

When both the displacement and the force producing it are at the same point we have the

dimensionless direct receptance given by
1

Uzz =T D,(Z) h, eler. (58)

Irgs

r

The procedure for calculating these receptances is straightforward. The elements of the
matrices E, A, G and H were first calculated by using equations (49). Their values were then
substituted in equation (54) which then became a set of z simultaneous equations with complex
coefficients in the unknowns uy, %, ..., %,, which could be solved on the digital computer.

The procedure was repeated for progressively increasing values of the excitation frequency w
for different values of fluid velocity p. Values of the receptance were then plotted on the complex
plane to show its variation with the excitation frequency at each value of the fluid velocity. The
curves were drawn in accordance with the usual practice in plotting harmonic response diagrams.
Thus the receptance at any point is represented by the vector connecting the origin to that point.
The positive real axis represents the direction of the applied force and the phase angle by which
the displacement lags behind the force is measured from the positive real axis in a clockwise
direction.

By working from equation (49), rather than (46), allowance can be made in just the same way
for internal and external damping of the tube. The introduction of values for the parameters
7 and « considerably increases the problems of displaying the resulting response loci however.
In the present investigation, therefore, only fluid damping (which is certainly of greatest
importance) was examined in studies of forced vibration.

3.2. Numerical values
In the free vibration analysis the main object of the calculations was to clarify the roles played
by the three parameters «, # and 7y; for each of these quantities represents a load of a distinct
dynamic type. The parameter o represents a non-conservative compressive follower force at the
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VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 17

end of the tube. The parameter # governs a velocity-dependent lateral load distributed over the
whole tube length.t The parameter vy represents a distributed weight loading that is also distri-
buted over the tube length. The effect on the instability is investigated when each of these
parameters is varied separately. Allowance was then made for Kelvin and viscous damping
separately.

In these investigations the tube was considered to have four bending degrees of freedom. In
other words, #in equation (2) was taken equal to 4. Analysis with five degrees of freedom was also
tried in a particular case. The lowest four branches of the root locus were affected so slightly that
it was not thought to be worth while to proceed. While this may perhaps be thought to cast some
doubts on the accuracy of some predictions concerning the higher order modes, it will be appreci-
ated that each added degree of freedom greatly increased the complexity of the calculations
whereas simplicity was a main objective.

The results to be presented in the analysis of forced vibration were computed for a particular
system in which & = 3.0; £ = 0.9 and y = 5. There is nothing special about these particular
values of the parameters. The only reason for their choice is that they produced a convenient
system for numerical calculations. Two instability boundaries were found within a reasonable
range of fluid velocity.

4. THEORY OF FREE VIBRATION
4.1, Effect of the weight parameter y

"The root locus diagrams for y = 0, 20 and 160 at & = 1.0 and B = 1.244 are shown in figures
4 (a)—(¢) respectively. Only the upper half of the complex plane is shown. The lower half is
a mirror image of the upper one since the complex roots occur in conjugate pairs.

Aty = 0, where the weight effect is nil (so that either the tube is horizontal or it has a very high
flexural rigidity), figure 4 (a) shows that the tube loses stability by flutter as the second branch
of the locus crosses the imaginary axis. By the ‘second branch’ is meant the continuation of that
branch which starts at the second lowest frequency on the imaginary axis when x = 0. This
continuation does not have the second lowest characteristic frequency at the instability boundary.
For this reason we shall refer to it as the second branch and not the ‘second mode’ as other authors
have called it.

Aty = 20, figure 4 (b) shows that the second branch remains in the stable region at least up to
4 = 12. But it is the third branch which now crosses the imaginary axis to the unstable side. As y
is increased further, the third branch turns back nearer to the imaginary axis until it actually
crosses it back to the stable side. This indicates a limited unstable region after which the tube
regains its stability in all its four branches. A second instability boundary then appears in the
fourth branch at a higher frequency (see figure 4 (c) and 5 (a)). At y = 160 the third branch
loop is completely in the stable side and the tube loses stability in the fourth branch. The weight
parameter 7y therefore changes the unstable branch successively from the second to the third to
the fourth.

As we have seen, it appears to be a matter of some importance to retain the identities of the
branches of the root locus, and not merely to refer to ‘modes’ in order of ascending frequency.
When the stability of a continuous system is being examined, the higher the order of a branch

1 Strictly the term representing this load in the equation of motion appears multiplied by #8 but adjustment
of f allows the change of this load irrespective of the value of s.

3 Vol. 284. A.
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investigated the more assumed modal shapes are needed for the same degree of accuracy. In fact,
since the higher values of y used in figure 4 involve the instability associated with higher order
branches, a larger number of modes in the analysis is necessary if accuracy of the results is to be
maintained. This is a point of some importance since certain instability studies of continuous
systems have been made with a two-mode analysis, i.e. by assuming the system to possess two
degrees of freedom only.
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F1cure 4. Root locus diagram for & = 1.0, # = 1.244 and for a range of values of y. The figures marked on the
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VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 19

It may be that the trend we have seen in figure 4 continues to higher branches as y is increased
further. That is to say, perhaps each branch in turn behaves like the third —first crossing the
imaginary axis to the ‘unstable side’, there forming a loop and finally shifting back to the
‘stable side’. But, as we have mentioned, this point can only be examined logically with a
successively increased number of assumed degrees of freedom.

On comparing figure 4 (¢)—(¢) we notice that in general 7y raises the characteristic frequencies
of the system in all the branches at any particular value of . This is seen clearly when the charac-
teristic frequencies on the different branches at 4 = 0, 6 and 10 are contrasted between figure
4 (b) where y = 20, and figure 4 (¢) where y = 160. Thus at y = 20, the lowest three natural
frequencies are about 7, 27 and 66 when 4 = 0, whereas when y = 160 the frequencies at 4 = 0
are approximately 16, 43 and 88 respectively. Similar conclusions may be reached for finite
values of x, so we find that y is essentially a stiffness parameter.

The locus branches that meet the real axis of the plane need some clarification. As mentioned
before there is a mirror image about the real axis for each complex branch. When a branch from
the upper half of the plane meets the real axis its conjugate therefore meets the axis at the same
point. There are then two purely real roots on the axis. These real roots remain on the axis for
some range of velocity, the appropriate points first moving away from each other and then moving
closer together again until they coalesce before departing from the real axis to form two conjugate
roots as before. The movement of the two roots on the real axis is indicated by a solid line on the
axis as seen in figures 4 (a)—(c).

imaginary

a=1.0 |
-——-a=11

—-—a=12
| 1 { 1 1
—20 0 20
real
Ficure 6. Root locus diagrams for § = 1.244 and y = 140 showing details in the region of instability transfer
between the third and fourth branches. The figures marked on the branches are values of .

4.2, Effect of the nozzle parameter o
Figures 5 (a)-(c) are the root locus diagrams for values of & = 1.0, 1.2 and 1.6, with # = 1.244
and y = 140. These figures show that, generally speaking, increasing a has the effect of shifting
the stable roots on the branches nearer to the imaginary axis and thus decreasing the effective
3-2
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20 R.E.D.BISHOP AND I. FAWZY

(hydrodynamic) damping in the system at any fluid velocity. At # = 0, the branches start on
the imaginary axis at the same values as before since « loses its significance when there is no
fluid flow.

Figures 5 (a) and (b) show that adjustment of o can cause transference of the instability from
one branch in the root locus to another. Thus figure 5 (a) shows that as the flow rate is increased
a limited instability occurs in the third branch (which may disappear altogether at a different
value of f as will be seen later); this is followed by stability again and then by instability in the
fourth branch. Figure 5 () on the other hand shcws that instability occurs in the third branch
and that the fourth is always stable. We shall refer to this phenomenon as ‘instability transference’
between the third and fourth branches. It is necessary to recall, however, that, strictly, more
degrees of freedom are required to ensure the accuracy of the predictions of these high order
branches, although it is unlikely that the admission of more terms will alter results qualitatively.

The instability transference of figures 5 (a) and () isillustrated in more detail in figure 6 where
only the two relevant branches are shown. The roots loci for & = 1.0 and & = 1.2 are contrasted
with that for the intermediate value & = 1.1. Itisseen that the curves display a form of degeneracy
akin to that associated with nodal lines in receptance diagrams.

He

20

J T

I L 1 I 1
300 400 7 100 200 Y
Ficure 7. Variation of nondimensional critical velocity .

I
200

4.3. Stability charts

It is of interest to examine the effects of &, # and y at the instability boundary, on the values
of the critical velocity g, and the critical frequency o. Figures 7 (a) and () show stability charts
for various combinations of the parameters. From figure 7 (@) it is seen that the destabilizing
effect of « is greater than the stabilizing effect of y in the sense that a percentage increase in o
results in a decrease in g, which is numerically greater than the increase caused by an equal
percentage increase in y. We also see that the destabilizing effect of « is greater when v is large
than when it is small. The inflexion in the instability boundary is shifted to higher values of y by
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increasing c. It is also diminished during its shift until it eventually disappears at sufficiently high
values of @ and y. The importance of the inflexion is that its presence indicates that & has a limited
stabilizing effect.

Figure 7 (b) shows the interaction between the mass ratio parameter £ and the weight para-
meter y. Values of £ indicated in the figures are in the middle of the possible range (0 < # < 2.0)
where the interaction is most pronounced. It is seen that 8 has a strong stabilizing effect which
increases at high values of y. For the same change in y the percentage increase in e is higher at
higher values of f.

The inflexion in the instability boundary is sensitive to the value of §. While there is a very
steep rise over a small range of y when # = 1.55, the region occupies a wide range of y at f# = 1.15.

120 T T T T T
[

// T

100

80

60
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?,\, 1 1 ] I

! 1 !
100 200 300 400 7Y
Ficure 8. Variation of the critical frequency o,.

Special interest centres on small values of § where the inflexion region is sufficiently remote to
allow a uniform rate of increase of u, with y. Consider the limiting case where m, is so large that
B = 0 while g has a finite value. The (hydrodynamic) damping term in equation (41) will then
disappear and the roots of the resulting characteristic equation (52) will all be real or imaginary
(but not complex). This means that the root locus branches sweep along the imaginary axis as
4 increases until a pair coalesce at some frequency. Instability takes place thereafter when these
coalescing roots depart from the imaginary axis in two branches, one to the left (stable) and one
to the right (unstable). This is the usual mechanism of instability in undamped systems and it is
referred to as ‘instability by coalescence of frequencies’. Coalescence of roots may not occur on
the imaginary axis; in such a case the roots sweep down the imaginary axis until they reach the
origin and then move sideways on the real axis on both sides. This is identified with divergence
rather than a flutter.

Variation of the critical frequency o has a different pattern as shown in figure 8. With & = 1
variation of o, with 7y is almost continuous with an inflexion region similar to that in the critical
velocity curves. As y increases the inflexion region moves to higher ranges of y and suffers a
sudden jump from low frequency to the high one. The critical frequency curves lose their con-
tinuity and appear to be chopped off. The reason for this is that the fourth branch crosses the
imaginary axis to the unstable side at a frequency higher than that at which the third branch
regains its stability as shown in figure 5 (a). Apart from this ‘chopping off” effect, the influence
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22 R.E.D.BISHOP AND I.FAWZY

of a on the critical frequency is smaller than its effect on the critical velocity. Variation of § was
found to produce similar effects on the relationship between o and 7.

4.4. The ¢ffects of internal and external damping

Figure 9 shows the computed variation of yc with v, for k = 0, 0.001, 0.002 and 0.003. The
effect of Kelvin damping is seen to be small at low values of y where yc is hardly affected by the
presence of damping. As y increases the Kelvin damping destabilizes the system significantly, the
effect being most pronounced in the inflexion region where #. now depends monotonically on .
The destabilizing effect of Kelvin damping is not maintained at all values of y and we see that the
instability boundary curves of the damped system eventually intersect with the curve for the
undamped system. The value of y at which intersection takes place increases with increasing
values of k. After the intersection point it appears that Kelvin damping now has a stabilizing
effect which increases with increasing values of y.

100

20

0.001

i

Ficure 9. Effect of the weight parameter 7y on the critical velocity g, for a range of values of the Kelvin damping
parameter kK, when a = 1.0; § = 1.244; 9 = 0.

| | 1

] | l ]
200 Y 300 200 Y 300

Ficure 9 Ficure 10

1
100

Ficure 10. Effect of the weight parameter y on the critical frequency o, for a range of values of the Kelvin
damping parameter k, when o = 1.0; f = 1.244; 9 = 0.

The calculated critical frequency o is affected by Kelvin damping in a similar way as shown
in figure 10. Now, however, intersection of the curves for the damped system with that for the
undamped system seems unlikely and the critical frequency is reduced more at high values of y
than at low.

Figure 11 shows the calculated variation of #c and o with « for the particular values of o = 1.0,
B = 1.244 and y = 140. (Viscous damping is again ignored so that # = 0.) Obviously the two
curves are dependent to some extent on the particular values chosen for «, # and v, but those
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24 R.E.D.BISHOP AND I. FAWZY

values selected are of special interest as they place the system in the inflexion region described in
the previous section and thus represent something of a ‘worst case’. If &, # and y are changed, the
curves can be expected to be modified, but only quantitatively and not qualitatively. In short,
figure 11 may be expected confidently to represent the effect of Kelvin damping with fair
generality. We see that u. decreases at first and increases again over a certain range of « after
which it becomes almost constant. On the other hand, o decreases significantly at first, as « is
increased. The second stable region, corresponding to the inflexion region for « = 0, vanishes
completely for the slightest value of . Its location is indicated by small arrows on the vertical axis.

Figure 12 shows the variation of . and o, with viscous damping coefficient 7. It is seen that
the viscous damping raises the critical velocity slowly to a limiting value. Correspondingly, the
critical frequency o decreases very slowly with increase of 7 and the second stable region persists
over a considerable range of viscous damping. It is of interest to compare the results contained
in figures 11 and 12; it will be seen that the effects of Kelvin and viscous damping are quite
different, particularly when the damping is small.

@y oy
T /
20

_8 L.
Ficurke 13. The direct receptance «;; as a function of frequency w at zero velocity for
n=4;8=09;y =5

5. THEORY OF FORCED VIBRATION
5.1. Direct receptance at the free end

Figure 13 shows the variation of the direct receptance at the free end (i.e. ;) with excitation
frequency o, for zero fluid velocity. Since z = 0, there is no hydrodynamic damping and so the
tube behaves as a simple vertical beam clamped at its upper end, free at the lower one and forced
to vibrate sinusoidally in a vertical plane. The receptance near the first natural frequency, in the
range 0 < w < 20, is shown inset.

Figures 14 (a)—( f) show curves of ay;, the direct receptance at lateral displacement of the free
end of the tube for a series of values g. In all cases, & = 3.0, £ = 0.9, v = 5, while the value of &
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(which is constant for each diagram) is varied from # = 1.0 to # = 8.0. The critical values
corresponding to these values are

He = fhey = 2.749  for the first instability (in branch 2)
Me = fiey = 6.728 for the second instability (in branch 4)

and Oc=0¢ =15 and o¢ = 0cy = 49

respectively.
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26 R.E.D.BISHOP AND I.FAWZY

Fluid damping increases with the velocity{ and the receptance diagrams change accordingly.
With fluid velocities for which the system is stable, the receptance curves are basically circular
loops superimposed on each other with different orientations. We shall therefore discuss only one
curve in detail.

N Ve
> =64 -~
[~~~ H=0- -

~— T

61

"-56

F1cure 14. Variations of the dimensionless direct receptance &y, for a series of values of g. Figures marked on the
curves are values of dimensionless driving frequency . For all the curves

n=4; a=30; £=09; v=25.

(a) p = 1.0,
() n = 2.0,

() p = 2.2, 2.4,2.6, 2.8, 3.0,

d) p = 3.0, 3.2, 3.4, 3.6,

(6) p =40,

(f) n = 6.2, 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 8.0.

Figure 14 (b), for instance, shows the receptance variation with frequency at g = 2.0. The
curve starts at a point P on the positive real axis, the in-phase axis, at @ = 0. As the frequency o
increases the curve develops in the lower half of the plane, forming four circular loops, in the last
of which the receptance tends to zero as the frequency increases to infinity. The four circular
loops correspond to the four bending degrees of freedom used in the analysis. The eigenvalues
of the system at x = 2.0, obtained as the roots of the characteristic equation found by put-
ting F = 0 in equation (46), are (—2.28+5.461), (—1.41+19.19), (—1.77+58.22;) and
(—1.74 + 117.58).

Two arcs of the circular loops} of figure 14 () are shown enlarged in figure 15. They are the
arcs in the vicinity of the ‘hydrodynamically damped’ natural frequencies @ = 5.64 and 19.19.

t Unless otherwise stated the word ‘damping’ will now refer to hydrodynamic damping only.
+ The other two loops exhibited the same feature. They are omitted for the sake of clarity.
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The excitation frequency is marked in equal increments and the damped natural frequencies are
located by interpolation. We notice in these figures that the frequency gradient along the recept-
ance curve reaches its minimum at each of these damped natural frequencies. This behaviour is
somewhat analogous to that discussed by Kennedy & Pancu (1947) and by Bishop & Gladwell
(1963) for linear passive systems. The ‘resonance diameter’ is not parallel to the imaginary axis
(as it would be for a passive system). This is demonstrated by the lines indicating the direction
normal to the receptance curve at the damped natural frequencies in the figure.

-
Im (o)

resonance
/ diameter
w=>5.64 —
5.0

" resonance

Xiiameter
19.0

19.00= 1919

18.6

18.8

194

410
Ficure 15. Variation of the dimensionless direct receptance o, near first and second resonances in figure 14 ().
Figures marked on the curves are values of .

Returning to figure 14 (b), we notice that the value x = 2.0 is well below the instability
boundary of the system so that the tube is effectively a dynamic system with heavy hydrodynamic
damping. Nevertheless there are two other features of the receptance diagrams that are worthy
of note. First it will be seen that the receptance vanishes almost completely at certain frequencies
between the resonant values. Secondly it will be observed that parts of the receptance loops lie
above the real axis. Neither of these aspects would be expected with a passive system; with them,
the receptance vanishes only at infinite frequency when there is heavy damping and, further,
phase leads are not encountered because it implies that the system can do work. These two
observations will be discussed later.

At higher velocities the system becomes incipiently unstable. Figures 14 (5) and (¢) show that
as s increases the point P where the receptance curve starts on the positive real axis moves closer
to the origin indicating that the static lateral stiffness increases. We also see that the first loop
diminishes in size while the second expands remarkably. (It was found that instability first occurs
in the second branch of the roots locus diagram.) Figure 14 (¢) shows clearly that as # approaches
the first critical value (u¢, = 2.749) the second loop continues expanding until it becomes of
infinite diameter at the critical velocity. At higher velocities still the first loop becomes difficult
toidentify and the second loop appears in the second quadrant of the complex plane instead of
the fourth, as seen in figure 14 (4). With further progressive increases of z the second mode loop,
still in the second quadrant, diminishes gradually until it, too, eventually disappears. (See
figure 14 (¢).)

42
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28 R.E.D.BISHOP AND I. FAWZY

For thisrange of 4 (i.e. # < 5) the third and fourth loops continue to appear much as they would
for a passive damped system. The third and fourth branches in the roots locus (which predomi-
nantly account for those loops) were found to lie in the left hand side of the diagram.

Every point of a receptance diagram represents the sum of the responses in all the modes. It
has been noted that this sum may be such that the curve intersects the positive real axis, as in
figure 14 (b) for example; at the frequency corresponding to such an intersection, no work is done
by the driving force. In figures 14 (d) and (¢) there is an intersection with the negative real axis
and this has a different interpretation, for in these diagrams mode 2 has become unstable. The
intersection occurs in each case at the characteristic frequency of this unstable mode since no
work has to be done to maintain the oscillation.

At higher velocities, in the unstable region, the receptance curves look roughly similar to those
in the stable region, but with the first and second loops now entirely absent. Each loop present
may still be associated with the response in a ‘mode’ of vibration.

On approaching the second critical velocity, sc, = 6.728, the third and fourth mode loops now
behave in a similar way to the first and second near the first critical value. Thus figure 14 (f) is
similar to 14 (¢) and the same state of affairs as before arises.

Qualitatively speaking, the same behaviour is observed at both of the two critical velocities.
The curves of direct receptance start near the origin (implying that the lateral stiffness is very
large) and shoot off to infinity through the first quadrant above the real axis as the excitation
frequency increases. (An infinite value of the lateral stiffness is not feasible, however, and this
point will be discussed in more detail later.) Passage to infinity through the first quadrant seems
reasonable on physical grounds. At the critical velocity, the tube tends to oscillate with its critical
frequency. When the excitation frequency is less than the critical, energy flows from the tube to
the driving mechanism and the displacement therefore leads the excitation and causes the recept-
ance curve to lie above the real axis. The phase lead continues until the excitation frequency
reaches the critical value where the amplitude becomes infinite. At this critical frequency, the
forcing mechanism neither absorbs energy nor supplies it since all the energy supplied to the tube
is provided solely by the fluid. Beyond the critical frequency the tube is forced to oscillate more
rapidly and the displacement lags behind the force, i.e. the receptance curve appears below the
real axis.

5.2. Inverse receptance at the free end

Figures 16 (a)—(d) show the inverse receptance at the free end, i.e. 1/a,, for # = 2.0, 2.4, 2.6
and 3.0 respectively. These values of velocity are around the first critical value, and we see that
the curves are for the most part nearly straight lines. With the exception of the first, correspond-
ing to the smallest values of w, these lines lie almost parallel to the real axis. The remarkable
rotation of the line corresponding to inversion of the first receptance loop is due to the change
in location of the first modal circle relative to the origin of the receptance diagram. The appear-
ance of straight lines in the inverse receptance diagrams is due to the fact that the receptance
circles pass through, or very near to, the origin.

The behaviour of the inverse receptance near the instability boundary is shown separately in
figure 17 (a). Only the range close to the critical velocity and critical frequency is shown. The
dotted line connects the second characteristic frequency at each fluid velocity. It is seen that for
velocities lower than ue, the inverse receptance curve intersects the positive real axis and proceeds
in the direction of increasing phase angle, the origin lying on the left hand side of the curve. As
the velocity approaches ¢, the curve shifts nearer to the origin until it passes through it at the
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critical velocity and the critical frequency. For velocities higher than pe, the curve is shifted
further to the left where it intersects the negative real axis and proceeds in the direction of
decreasing phase difference, the origin now appearing on its right hand side.

At any higher value of x, the higher modes which are still stable repeat the behaviour of
the lowest modes at the velocities lower than the critical until the second critical velocity is
approached. Figure 17 (b) shows the inverse receptance around the second critical velocity. The
behaviour is quite similar to that in the vicinity of the first critical value.
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Ficure 16. Inverse dimensionless receptance 1/e;; for a range of values of y. Figures marked on the curves are
values of w. The curves correspond to those of figure 4. (a) p = 2.0, (b) p = 2.4, (¢) p = 2.6, (d) p = 3.0.
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Ficure 17. Variation of dimensionless inverse receptance 1/a,; at a stability boundary. Figures marked on the
curves are values of w. (a) first instability boundary, (b) second instability boundary.
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30 R.E.D.BISHOP AND I.FAWZY

Results in figures 17 (¢) and () confirm the ‘shifting rule’ established earlier, namely, the
flutter instability boundary is characterized by the passage of the inverse receptance curve
through the origin exactly at the critical velocity and the critical frequency.

5.3. Special features of the receptance curves

In presenting the computed results for the system of figure 3 we pointed out a number of
features of general validity. We come now to discuss certain remaining points that appear either
to be peculiar to the system in question or to warrant special attention. These are:

(1) the vanishing of the receptance at finite frequency,

(2) the appearance of the receptance curve above the real axis when the system is completely
stable,

(3) the migration of the starting point of the receptance curve along the real axis near the
origin.

The first point suggests that the system may have some pure imaginary anti-resonance eigen-
values. As pointed out earlier these are the (resonance) eigenvalues of the system that results
when the excitation point is constrained to zero displacement —that is to say when the tube is
clamped-pinned.

The analysis of the clamped-pinned tube is outlined briefly in the appendix. The roots locus
diagram, for the same values of &, fand vy, is shown in figure 18. The four branches of the clamped-
pinned tube climb down the imaginary axis as the velocity increases and each branch in turn
splits at the origin of the diagram into two pure real branches which sweep along the positive and
negative axes. Figure 18 therefore does confirm that all the anti-resonance eigenvalues are pure
imaginary up to some value of #, beyond which one or more becomes pure real with positive and
negative real values. Before divergent instability is reached the clamped-pinned tube has pure
imaginary eigenvalues. Thus there is no hydrodynamic damping of the tube motion. The modes
of free vibration of the clamped-pinned tube are therefore exactlyin phase or exactly out of phase.

This behaviour of the clamped-pinned tube throws some light on the dynamic behaviour of
the clamped-free tube near the anti-resonance frequency. At such a frequency the free tube
vibrates under the action of an external force at its lower end, and it does so in the manner of free
vibration of the clamped-pinned tube. It was in fact verified that the frequencies at which the
receptance tends to zero coincide with the natural frequencies of the clamped-pinned tube as
extracted from its roots locus diagram. In addition when the free tube was excited at 0.4 of its
length from the top (i.e. at Z = 0.4) the receptance did not vanish as before. This is seen easily
when figure 19 is compared with figure 14 ().

The second feature, namely the appearance of some parts of the receptance curve above the
real axis, may be connected with the first. We have seen that there is no damping at an anti-
resonance frequency (equal to a natural frequency of the equivalent clamped-pinned tube) and
the vibration modes are either exactly in phase or exactly out of phase. As the excitation frequency
is increased the tube departs from the anti-resonance state and damping builds up gradually. It
seems possible that the phase lead that is sometimes observed is related to the variation of
damping. The phase lead does not appear in figure 19 when there is no anti-resonance.

We turn now to the third feature, namely the movement of the starting point of the receptance
curve along the real axis back and forth through the origin as the velocity increases. The natural
frequencies of the system were found to decrease in general at higher velocities, as may be seen
from the roots locus diagram, so it might be concluded that the stiffness of the system decreases
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F1cure 18. Root locus diagram of the clamped-pinned tube with
n=4;aa=3;=09;y =5
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F1cure 19. Dimensionless direct receptance at X = 0.4 for 4 = 2.0 withn = 4; ¢ = 3; £ = 0.9; y = 5.
Figures marked on the curve are values of w.
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32 R.E.D.BISHOP AND I. FAWZY

as well since the equivalent mass does not change. This conclusion is in conflict with the move-
ment of the point P in figure 14 nearer to the origin; for that movement indicates higher lateral
stiffness with higher velocities until the stiffness reaches an infinite value when the point P lies
exactly at the origin. We notice, however, that the point P lies at the origin when g ~ 2.7 (see
figure 14 (¢)). Thisvalue of xis the first divergence boundary of the corresponding clamped-pinned
tube as seen in figure 18, and this suggests a reasonable explanation for the behaviour. In the
vicinity of a divergence instability boundary the forced clamped-free tube, behaving as if it is
clamped-pinned, tends to buckle continuously in one direction. Consequently a large force is
required to hold the free end in position. At velocities higher than the divergence boundary the
tendency to buckle will cause the tube to press against the support, causing the displacement to
be exactly out of phase with the applied force so that the point P appears on the negative part of
the real axis.

A

Ficure 20. Variation of dimensionless direct receptance «;, at the divergence limit and flutter limit for a tube in
whichn =4, =1, = 0.9,y = 5,7 = 0, kK = 0. Figures marked on the curve are values of w.

The migration of the point P is not related to the flutter boundary which happened to occur
near the divergence boundary for the clamped-pinned tube. To clarify this point a different case
is considered in which # = 4, & = 1.0, # = 0.9 and y = 5. At these values a clamped-free tube
has a flutter boundary when g = 6.07 while a clamped-pinned tube first diverges when y = 4.74.
The receptance diagram for the clamped-free tube in this range of velocity is shown in figure 20.
It is seen that the point P passes through the origin between y = 4.6 and 4 = 4.8 while near
J = 6.07 no particular changes occur at the starting point of the receptance diagram.

To sum up, we see that the apparently strange features in the receptance of the clamped-free
tube are in fact explicable by reference to the anti-resonance eigenvalues; that is, in terms of the
corresponding clamped-pinned tube. We find a sort of ‘dynamic interference’ between the
parameters of the clamped-pinned tube (like its divergence limit) and those of the clamped-free
tube, under harmonic excitation.

6. EXPERIMENTS
6.1. General remarks and apparatus

Free oscillation tests were performed to determine the instability boundary, first using a con-
stant tube length with different nozzles and secondly using a selected nozzle with different tube
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lengths. This meant changing « at constant y and vice versa. It was not necessary to use tubes of
various cross sections or various fluids since the loading parameter # has been sufficiently investi-
gated before by Gregory & Paidoussis (1966) and Paidoussis (1970). Thus only one fluid - water —
was used and various sizes of tubes were tried until a suitable one was found; the chosen size was
such as to give § = 1.244.

Forced vibration experiments were performed to investigate the receptance and its inverse.
Since the direct receptance increases to infinity and its inverse decreases to zero at the instability
boundary, it was more convenient to measure the latter. The inverse receptance was measured in
a straightforward manner. A lateral sinusoidal displacement of constant amplitude was imposed
on the tube. The necessary applied force at the point of excitation was therefore proportional to
the inverse of the direct receptance at that point. By measuring the amplitude and phase of the
applied force, the inverse receptance could be completely determined.

discharge milli—

rotameter reading voltmeter

L-C filter " @
‘, lJ .C.Y.0.
[
water amplifier
clamp| inlet
4 4
;""‘_—'__'—"_ _____________________ |
T
! force cross— displacement
X transducer head transducer
| T
rubber|| | | |
tube || | wheel ‘Lypf | differen—| || |offset
| tial # cam
1 I d.c.motor reduction gear H
/ } unit unit {
L= sl sy NS — H
mag-|
netic
pick-]
up cam
d.c.rectifier frequency adjustment
~and meter and
speed control phase angle
unit reading

Frcure 21. Diagrammatic layout of apparatus.

The tubes were made of high quality surgical silicon rubber and were carefully selected so that
defects were avoided. Since they were not specially cast, however, the rubber tubes all had a
slight bend. The upper end of each rubber tube used in the experiments was shrunk inside a metal
pipe whose bore just fitted the outside diameter of the tube. The pipe was clamped firmly between
two metal Vee blocks mounted on a rigid frame. High pressure water was supplied to the tube
through a regulator and the rate of flow was measured with a rotameter. A flow straightener was
fitted just before the entry to the tube. The nozzle was a Perspex disk whose diameter was slightly
larger than the internal tube diameter. A central hole was drilled in the disk so as to give the
desired value of & and the disk was then shrunk inside the tube at its free end.

5 Vol. 284. A.
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34 R.E.D.BISHOP AND 1. FAWZY

A cross-head mechanism, based on the Scotch-yoke principle, was used to impose the sinusoidal
lateral vibration on the tube. The cross-head was driven by a d.c. motor through a speed reduction
unit, a speed-control unit being incorporated with the d.c. rectifier feeding the motor. The force
between the tube and the cross-head was monitored by a force transducer.

The shaft driving the cross-head also drove a sinusoidal cam at the same speed, but it did so
through a differential gear unit of speed ratio 1: 1. This cam actuated a displacement transducer
that generated a sinusoidal signal of the same frequency as the movement of the cross-head. But
the casing of the differential unit was capable of independent rotation about its axis so the phase
of the displacement transducer signal could be advanced or retarded with respect to the force
transducer signal. This was achieved without affecting the speed ratio between the cross-head
shaft and the cam.

A diagrammatic layout of the apparatus is shown in figure 21. Electrical connections are
indicated by single lines. Mechanical connections are represented by double solid lines. The
dotted rectangle refers to a common base which carried the motor, the speed reduction unit, the
cross-head and the differential unit.

6.2. Procedure and measurements

Neither the experimental procedure nor the manner of taking measurements required sophisti-
cated equipment. The tube length could be varied between 25 and 60cm and its value was
directly measured. The outside diameter was measured at different places and in different
directions by means of a micrometer and an average value was taken. The inside diameter was
measured indirectly by weighing a known length of the tube with and without water inside it.
By this means the mass of tube and mass of water per unit length were also determined. The value
of the Young modulus was found by applying simple tension and compression tests on suitable
specimen lengths of the tube and evaluating the average slope of the force-deflexion curve. The
value of the flexural rigidity EI was checked by measuring the natural frequency of the empty
tube when vibrating freely as a vertical cantilever. Further details are given elsewhere (Wahed
1969).

The experimental procedure for free oscillation was very simple. The water flow was increased
in small steps and care was taken to allow conditions to become steady at each. When the tube
started spontaneous oscillation the rate of water discharge was recorded and thence the critical
water velocity yc determined. The critical frequency o was obtained by observing the sustained
oscillations.

To measure the force acting on the tube in forced vibration experiments a force transducer was
fixed in the link between the cross-head and the tube. It was basically a flexible bimetallic strip
with four strain gauges on its faces. A low frequency millivoltmeter was used to measure the r.m.s.
value of the amplified filtered force signal. The signal was also fed into a long persistence cathode
ray oscilloscope to control the vertical deflexion of its electron beam.

The displacement transducer generated a reference sinusoidal signal of the same frequency as
the cross-head movement. This signal was fed into the same oscilloscope, controlling the
horizontal deflexion of the electron beam. As already mentioned the phase of this signal could
be changed by rotating the differential gear unit transmitting motion to the cam. This adjustment
was made manually and a protractor scale, whose zero indicated the in-phase position, indicated
the amount of rotation. In general the two signals produced an ellipse on the oscilloscope screen.
The differential gear was then rotated until this ellipse was reduced to a straight line. The pro-
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Ficure 22. Ficure 23.

Ficure 22. Static distortion shapes before instability.

F1cure 23. Dynamic instability after touching the free end of the tube.

(Facing p. 34)
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VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 35

tractor reading then gave the phase angle between the two signals, i.e. between the force and
the displacement.

A magnetic pick-up was placed so as to face the teeth of a toothed wheel rigidly keyed on the
motor shaft. Movement of the teeth opposite the magnetic pick-up generated electric pulses that
were fed into a digital frequency-meter. In this way the speed of the motor, and consequently the
frequency of oscillation, was measured.

The general procedure adopted in forced vibration experiments was to fix the water velocity
at a suitable value and then to change the frequency of excitation, i.e. the motor speed, gradually.
At each frequency of excitation the two signals fed to the oscilloscope were made to produce a line
on the screen by rotating the differential gear unit against the protractor scale. When this had
been done the readings of rotameter, frequency meter, millivoltmeter and protractor scale were
recorded. These readings gave the water velocity, the excitation frequency, the force amplitude
and the phase angle respectively.

In plotting the results, the readings from some instruments have been used directly since they
vary proportionally to the parameter of interest. The frequency factor f, for example, was the
reading on the frequency meter. This was equal to 480 times the frequency of oscillation in Hz
because the toothed wheel facing the magnetic pickup had 480 teeth and the frequency meter
displayed the number of pulses per second. Similarly the discharge reading R was used instead
of the velocity parameter x employed hitherto. (The setting of the rotameter scale was in fact
such that the flow velocity U was related to R by the equation U = 1.185R x 107%/4 m s~1, where
4 is the internal area of cross section in square metres.)

The amplitude of sinusoidal movement of the cross-head was maintained at 2.0 mm. The force
corresponding to the reading of the millivoltmeter was obtained by direct calibration under
dynamic conditions. The scale of the inverse receptance is shown in the diagrams.

7. FREE VIBRATION EXPERIMENTS
7.1. Static distortion

As the water velocity was gradually increased the tube was noticed to distort slowly into
different shapes successively. This phenomenon was observed in all the experiments. These
shapes differed from the distortions due to residual internal stresses in the rubber; for when
a distortion of the latter type was present, it appeared merely as an irregular shape localized at
some section of the tube only.

The observed shapes were similar to the lowest buckling modes of a simple Euler beam under
compression and photographs of them are shown in figure 22, plate 1. The first and second modes
of a uniform strut, and also the transition from the first to the second, were easily observed in all
the experiments. The third, and sometimes the fourth, appeared only with long tubes. Having
become distorted the tube remained in equilibrium in its deflected configuration. Any transient
disturbance, whether lateral or longitudinal, died out and the tube retained the same distorted
shape until the water velocity was increased sufficiently to cause flutter instability.

This process of distortion was of an essentially static nature and it was not an instability by
divergence. Had the distortion been divergent, it would have grown continuously, neither
acquiring equilibrium nor changing its configuration. Moreover the deflexion at this configura-
tion was too small to be attributed to nonlinear effects.

52
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36 R.E.D.BISHOP AND I. FAWZY

The static nature of this observed distortion became even more apparent when it was compared
with the actual dynamic instability by divergence that occurred when the free end of the tube was
touched. The tube deflexion then grew unidirectionally, and continued to do so even after an
extremely large deflexion had been achieved. This is illustrated in figure 23, plate 1, which
shows a series of ciné photographs taken immediately after the lower end of the tube was touched
with the tapered stick appearing in the photographs.

It will be recalled that the equilibrium configuration of a cantilever beam under a follower
compressive force at its free end is not yet known since the usual differential equation fails to give
any solution but the trivial one. Evidently this does not necessarily mean that an equilibrium
configuration does not exist. We shall return to this point later.

He

L | | S
0 100 200 300 Y 400

FicURE 24. Variation of critical velocity p, with the weight parameter 7y for a range of values of
the nozzle parameter ¢, for f = 1.244.

7.2. Experimental results

Results of the experiments carried out to determine the variation of the critical velocity #c and
critical frequency o, with the nozzle parameter o and the weight parameter y are shown in
figures 24 and 25. The effect of varying the parameter  was investigated by considering two sets
of nozzles. In the first set a varied from 1.0 to 1.5 with small increments; this covered the more
interesting range as revealed by the theory in § 4 (see figure 7). The second set included a coarser
range, up to & = 4.0. The results shown in these figures are self-explanatory. They show good
qualitative agreement with the theory. In particular it will be seen that as « is increased, e
decreases greatly and o is only affected relatively slightly.

Figures 26-28 show some experimental results with corresponding theoretical calculations for
values of k chosen on the basis of free vibration tests. These figures show that the experimental
results are generally higher than the theoretical values. There is a difference of about 15 %
in g and about 6 %, in o on average and the difference is more or less uniform. This indicates
that the rate of change of pc or o with y or « is more or less the same in theory asin the

experiment.
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The reason for the difference referred to is perhaps the static distortion of the tube before the
instability boundary was reached. Displacement from equilibrium to the deflected shape
absorbs some of the input energy, the amount being determined by the elastic properties of the
tube. The instability boundary, which is effectively determined under the assumption of a
balance between input energy and output dissipative energy, is therefore reached at a higher
velocity than would have been the case without buckling. The theoretical analysis of free vibra-
tion does not take into account this effect of static distortion and hence it predicts a lower

g instability boundary.
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Ficure 25. Variation of critical frequency o, with weight parameter 7y for a range of values of
nozzle parameter o, when £ = 1.244.
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Ficure 26. Variation of experimental and theoretical values of the critical velocity s, with the weight parameter y
for a range of @ and for assumed values of x when £ = 1.244 and assuming that 9 = 0.
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Evaluation of the strain energy absorbed in static distortion requires the determination of the
equilibrium configuration of the tube as a cantilever beam under a follower compressive force.
Bolotin (1964) refers to a similar situation in connection with the stability of a straight equilibrium
configuration under a compressive follower force and states (on pages 289-290) that: ‘Of special
importance is the fact that the transition from real to complex roots can proceed through multiple
values which are different from zero, i.e. by passing through neutral equilibrium.’
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Ficure 27. Variation of experimental and theoretical values of the critical frequency o, with weight parameter vy,
when f = 1.244 and it is assumed that 9 = 0.
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Ficure 28. Variation of experimental and theoretical stability limits with nozzle parameter a, for
B = 1.244; k = 0.003; 7 = 0.
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Other reasons for the deviation between the experiments and the theory may be due to the
lack of initial straightness of the tube and nonlinearities in the system. Their contribution, how-
ever, is expected to be only small compared with that of the static distortion effect.

8. FORCED VIBRATION EXPERIMENTS
8.1. Practical considerations

Limitations had to be accepted on the range of parameters that would be employed in the
forced vibration experiments. Very low excitation frequency made it difficult to obtain reliable
and consistent readings. Again, very high water velocity made the tube vibrate significantly
without reference to the driving mechanism.

The horizontal level below the clamped end of the tube at which the lateral excitation was
imposed (i.e. the value of Z) was decided after some preliminary trials. The level at which the
driving force is applied influences the extent to which each separate mode is excited. Thus if the
excitation point coincides with a node of one particular mode, it is unlikely that this mode will be
excited at all.

It was noticed that in the vicinity of the instability boundary the tube was very sensitive to
anything touching the free end. As mentioned before, this caused the tube to distort in one direc-
tion like a clamped-pinned tube that is unstable in divergence. When this happened, it was
extremely difficult to arrest the tube, let alone to oscillate it sinusoidally. It was therefore decided
to excite the tube at a point nearer its clamped end. Unfortunately, this decision did not remove
this particular difficulty completely since the portion of the tube below the excitation point
behaved as a pinned-free beam on its own. This behaviour was most pronounced near a natural
frequency of the lower part when it acted as such a beam. The amplitude of movement at the
lower free end was then large, as was the amplitude of force at the excitation point. It was also
noticed that the phenomenon of beating was also observable near the instability boundary; this
probably represented some interaction between the excitation frequency and the natural
frequency of the lower part of the tube. No steady readings could be obtained when beating
occurred.

Numerous attempts were made to excite the tube, a number of sections being chosen for the
imposition of the sinusoidal displacement. It was also found necessary to adjust the amplitude of
the imposed displacement. Satisfactory results were eventually obtained but it has to be said
that the study of a resonance test on an active system near an instability boundary is not easy.

8.2. Force response with zero flow velocity

A set of preliminary experiments was carried out in order to investigate the dynamics of the
vertical tube and the effects of small water velocities. This was necessary because familiarity with
the force response locus was needed before the instability boundary could be explored with
adequate comprehension.

Figure 29 (a) shows the force loci for stationary fluid inside the tube (R = 0) and for a range of
small water velocities (up to R = 12). The level at which the excitation was applied is Z = 0.3.
Figure 29 (b) shows the corresponding results for Z = 0.4. In this figure, and all the rest of the
figures that follow, the displacement vector is taken to coincide with the positive real axis, which
is therefore referred to as the ‘in-phase axis’. The response curves are plotted above the real axis,
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F1cure 29. Force response loci for low velocities. Numbers on the curves are values of the frequency parameter f.
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Ficure 30. Force response loci for low velocities. Numbers on the curves are values of the frequency parameter f.
For this tube, & = 1; § = 1.244; y = 250; X = 0.15 = Z. Scale: 1 div. = 89x 106 N.
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the phase difference between the force response vector and the displacement vector being
measured from the positive real axis in the counterclockwise direction. This is in accordance with
usual practice in plotting receptances for which the displacement response is plotted under the
real axis when the system is excited by a harmonic force.

The two figures, 29 (2) and (b), show that each locus follows a circular arc progressing in a
clockwise sense as the frequency increases. This conforms with the theoretical calculations
presented before.

The resonance frequency of the tube is that frequency at which the force response reaches its
minimum value. This is the frequency at the nearest point on the locus to the origin. The force
response increases with increase of frequency until it reaches a maximum value; then it decreases
again as the locus returns towards the origin, the frequency then approaching the second
resonance frequency of the tube.

When the amplitude of the force response was near its maximum value, it was noted that the
lower part of the tube oscillated violently. The excitation frequency when the force response was
a maximum fell very close to the first natural frequency of the lower part of the tube as a pinned-
free beam. This suggested that the excitation point acted as a hinge supporting the lower part and
hence the reactive force at the ‘hinge’ was extremely large. In other words the harmonically
excited clamped-free tube was composed of two subsystems joined together at the excitation
point. These subsystems are the upper part behaving as a clamped-pinned tube and the lower
part behaving as a pinned-free beam. The possibility of this ‘dynamic interference’ was
anticipated in the theoretical analysis.

An interesting difference may be seen between the loci of figures 29 (2) and (b). While the
frequency of the minimum force response is fairly constant (f &~ 1000 for all loci) the frequency of
maximum force response increases considerably ( fbeing from about 1260 to 1360 when Z = 0.3
and from about 1515 to 1614 when Z = 0.4). This is understandable since a larger value of Z
means that the lower part is shorter and consequently possesses a higher natural frequency.

8.3. Force response for low velocities

Figures 30 (a)—(c) show the force response loci at a series of small water velocities. These loci all
relate to the condition X = 0.15 = Z. Taking just the first of them, it can be seen that the reson-
ance frequency of the tube, as indicated by the minimum force response, decreases with increase
of velocity, while the phase angle increases to a maximum and then decreases again. These
changes are to be expected on account of the increasing hydrodynamic damping that is associated
with water velocity. This is easily seen when the curve for R = 0 is compared with that for R = 2.
The resonance frequency varies only slightly whereas the phase angle varies considerably.
Moreover, the minimum force response at resonance increases with water velocity, as one
would expect since damping usually reduces the displacement response of a force excited
system.

As the velocity is increased and the system approaches the instability boundary, the circular
loop whose main contributor is the first natural mode of vibration diminishes gradually. This may
be seen in figure 30 (b). At the same time another loop starts to form. This latter expands while
the first loop nearly vanishes as the velocity is further increased, as may be seen in figure 30 (),
The main contributor to this new loop is the second mode of vibration of the tube —the unstable
mode. Inflation of the loop is most pronounced near the origin of the complex plane especially
near the critical velocity.

6 Vol. 284. A.
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Ficure 31. Variation of inverse receptance at the instability boundary. For this system: & = 1; § = 1.244;
v = 250; X = 0.15 = Z. Scale in figures (a) and (d): 1 div. = 44x 10~ N/m. Numbers on the curves
(a) are values of frequency parameter £, and on curves (d) are values of velocity parameter R.


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

VIBRATION OF A FLEXIBLE TUBE CONVEYING FLUID 43

The responses at the sections X = 0.3 and X = 0.4 exhibited the same features as those shown
in figure 30.

8.4. Harmonic force response at the instability boundary

Figure 31 (a) shows the force response loci at the instability boundary. It confirms the
theoretical prediction that the inverse receptance locus passes through the origin of the plane at
the critical frequency. The shift of the curve across the origin from the side of increasing phase to
the side of decreasing phase is very noticeable. It is believed that this is the first time such a
diagram has been found experimentally for an unstable mechanical system.

The amplitude and phase of the force response are plotted against frequency in figures 31 (4)
and (¢) respectively. The minimum force response at the resonance frequency (sometimes called
the residual force) decreases as the system approaches its instability boundary until it vanishes
at the critical values of velocity and frequency. The effect of any parameter on the stability of the
system can therefore be studied by investigating its effect on the residual force.

The change of the phase angle in figure 31 (¢) is best understood by considering two different
conditions. Before the instability boundary is reached the loci of the force response are to be
found in the first quadrant and the phase angle increases continuously in the range between
0° and 90°. After the instability boundary has been reached the loci are confined generally in the
other three quadrants and the phase angle decreases continuously from 0° to —270° via — 90°
and —180°.

—r—4

quadrature

1474 —

Ficure 32. Inverse receptance at the instability boundary for a system in which a = 1.27; § = 1.244;

v = 250; X = 0.15 = Z, Numbers on the curves are values of frequency parameter f. Scale: 1 div. =
44 x 10-3 N/m.

Figure 31 (d) shows the force loci near instability for constant frequencies, with the flow
velocity varying along the curves. These loci were obtained independently by fixing the excitation
frequency and changing the water velocity gradually. Gradual increase of water velocity at
constant frequency produces similar loci to those resulting from gradual increase of frequency
at constant velocity. Figures 81 (¢) and (d) determine the instability boundary completely. The
first gives bounds for the critical velocity according to the position of the origin of the complex
plane among the loci. The second figure gives bounds for the critical frequency in a similar way.
These bounds could be made as close as is desired merely by decreasing the increments of velocity
and frequency.

6-2
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Ficure 33. Inverse receptance at the instability boundary for a system in which a = 1.0; £ = 1.244;
¥y = 250; X = 0.3 = Z. Numbers on the curves are values of frequency parameter f. Scale: 1 div. =
44 % 10-% N/m.
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Ficure 34. Inverse receptance at the instability boundary for a system in which « = 1.5; f = 1.244;
v = 250; X = 0.3 = Z. Numbers on the curves are values of frequency parameter f. Scale: 1 div. =
44 % 10-% N/m.
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Ficure 35. Inverse receptance at the instability boundary for a system in which a = 1.27; f = 1.244;
¥ = 250; X = 0.4 = Z. Numbers on the curves are values of frequency parameter f. Scale: 1 div. =
44 % 10-3 Njm.
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In the remaining figures only the frequency locus is plotted. This gives the critical velocity.
The critical frequency is determined from the graph of force amplitude against frequency by
interpolation between the frequencies at the velocity bounds. Figures 32—-35 show the results of

experiments carried out using different nozzles and different excitation points, as indicated by
the values of o and (X, Z).

9. CONCLUSIONS

(i) Free oscillation of a vertical flexible tube conveying a fluid has been studied theoretically.
The stability of the system has been examined, with particular reference to the nozzle para-
meter a, the gravity parameter y and the damping present.

(ii) Ananalysis has been made of the direct receptance and its inverse for this non-conservative
mechanical system. A vertical clamped-free tube conveying fluid has been investigated below,
at and beyond its instability boundary. In particular, a method of determining the instability
boundary of a non-conservative system has been examined, namely that of measuring, or plotting,
the inverse receptance in a way similar to the application of the Nyquist criterion with automatic
control systems.

The analysis revealed a phenomenon that may be termed ‘dynamic interference’. The special
features of the receptances of the clamped-free tube which are explained in terms of the properties
of the clamped-pinned tube suggest that, without an understanding of the dynamic interference,
the results are open to misinterpretation.

(iii) Free vibration has been examined experimentally. The assumption of small Kelvin
damping within the structure appears to bridge the gap between a theory which admits only
hydrodynamic damping and the experimental results, and to do so very well indeed. In particular,
the complicated interdependence of the follower force, the weight load and the Kelvin damping
(i.e. of the parameters e, y and «) has been elucidated theoretically and verified experimentally.

The static distortion phenomenon reported here may turn out to have a wider importance. It
might shed some light on the neutral equilibrium of a cantilever with a follower force, where
static analysis fails.

(iv) In experiments on forced vibration the applicability has been examined of resonance
testing techniques near an instability boundary. Gurves plotted for different values of parameters
near the instability boundary confirm the reliability and consistency of the harmonic force
response method in an investigation of mechanical stability. Care must be taken, however, to
avoid (or properly to interpret) ‘dynamicinterference’ between the subsystems that are identified
by the excitation process. Examples of this with the vertical tube were provided by resonance of
its lower part and divergence of its upper part. In practice, dynamic interference could so obscure
results as to lead to erroneous conclusions.

No allowance was made for damping, either external or internal, in the theory presented for
forced vibration. We therefore cannot compare the theoretical predictions directly with the
experimental results. Nevertheless it was easy to measure the critical velocity and the critical
frequency of the tube in free vibration and the values found compared very well with the force
response results.
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10. ApPENDIX. ROOT LOCUS DIAGRAM OF THE CLAMPED-PINNED TUBE

Analysis of free vibration of the clamped-pinned tube is performed in the same way as it is for
the clamped-free tube. The equation of motion is

IP + ppEP +[A + j2aG +yH] P = 0. (A1)

The elements of the matrices E, A, G and H are determined by integrations similar to those in
equations (42) but with the characteristic functions of a clamped-pinned beam obeying the
appropriate end conditions. Thus their elements are given by:

_ 1 , 1 ot Iy " 0
B = fo D, P,dX = PrEpY. (D7 Ps— D, D), + (P D) o]
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E, = [ ®,®.dX = 0
J 0
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i, :f ®, 0 dX = 0
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"
0

— 1 ” 1 " M V¥, A2
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0

7 ! " ’ 1 " B " AR
B, = [ 10X-1)0,00+0,0(dX = 5 [(3+C,) (P00 + (24 C,) (P80)
r s
v ’ " v V4 " 4
+ (1 + Crs) (@r gzjs)l_ (Qr &y — D, qjs)o] where Gy = (Ar//\s)4 1

_ 1
i, =f [(X—1) 0,8, +&,B;] dX = } -0, A, + 30222
0

Values of A, and o, here are those of the clamped-pinned beam.

The steps in the solution of equation (A 1) are exactly the same as those explained for the
clamped-free tube and the root locus diagram is shown in figure 18. This diagram is drawn for
the values & = 3, f# = 0.9 and y = 5. Itis based on a four mode analysis, so that n = 4. The four
branches all coincide with the imaginary axis until they reach the origin. Numbers going along
the branches indicate values of the velocity parameter 4.

The authors wish to acknowledge the help they have received from Dr A. Simpson, who drew
their attention to the approach discussed in § 1.2.
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